Search results

1 – 2 of 2
Article
Publication date: 16 April 2018

Sergey Shevtsov, Igor V. Zhilyaev, Ilya Tarasov, Jiing-Kae Wu and Natalia G. Snezhina

The purpose of this paper is to develop the multi-objective optimization approach and its numerical implementation to synthesise the model-base control for the part curing at…

Abstract

Purpose

The purpose of this paper is to develop the multi-objective optimization approach and its numerical implementation to synthesise the model-base control for the part curing at autoclave processing, which supplies the stability and uniformity of the structure and mechanical properties of the material within the cured composite part.

Design/methodology/approach

The approach includes conversion of the cured part and mold geometry from their computer-aided design (CAD) to computer-aided engineering (CAE) representation, a finite element (FE) formulation of the coupled forward heat transfer/thermal kinetic problem with the parameters of prepreg, which should be determined by the thermal analysis, and, finally, a mapping of the area of 4D design space (thermal control parameters) to 2D objective space, whose coordinates are the maximum deviations of degree of cure and temperature within the cured part calculated at each call of the FE model.

Findings

The present modeling and optimization approach to the cure process control of the prepreg with thermosetting resin, as well as the means of visualizing optimization results, allow providing insight into complex curing phenomena, estimating the best achievable quality indicators of manufactured composite parts, finding satisfactory parameters of the control law and deciding considering all manufacturing constraints.

Research limitations/implications

The research can be effectively used to optimize the cure process control for a wide class of polymeric composite parts, even with a complex geometry, but it requires the exact conversion of the geometry of the modeled part from the CAD to CAE environment, which implies the need for excluding all topological imperfections of original CAD model to eliminate the possible formation of void elements and other reasons that do not allow the correct FE meshing. Because thermal, rheological and kinetics parameters, which include the governing equations of cure process, depend on the reinforcing fibers, and especially on the resin properties, the thermal testing for the new modeled prepreg needs to be performed.

Practical implications

Computer implementation of the proposed approach and numerical method for model-based optimal control synthesis for composite part cure process can be used in aircraft, rotorcraft, ship and automotive technologies at the design of manufacturing process of the large composite parts with complex shape.

Social implications

This will allow much better quality for large-scale composite parts, excluding very expensive, time-, energy- and material-consuming multiple cure process testing.

Originality/value

This is first time the problem of optimal control synthesis for curing the large-scale composite parts of complex shape was solved.

Details

Engineering Computations, vol. 35 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 September 2022

Abdul Wahab Hashmi, Harlal Singh Mali and Anoj Meena

The purpose of this paper is to study the functionality of additively manufactured (AM) parts, mainly depending on their dimensional accuracy and surface finish. However, the…

Abstract

Purpose

The purpose of this paper is to study the functionality of additively manufactured (AM) parts, mainly depending on their dimensional accuracy and surface finish. However, the products manufactured using AM usually suffer from defects like roughness or uneven surfaces. This paper discusses the various surface quality improvement techniques, including how to reduce surface defects, surface roughness and dimensional accuracy of AM parts.

Design/methodology/approach

There are many different types of popular AM methods. Unfortunately, these AM methods are susceptible to different kinds of surface defects in the product. As a result, pre- and postprocessing efforts and control of various AM process parameters are needed to improve the surface quality and reduce surface roughness.

Findings

In this paper, the various surface quality improvement methods are categorized based on the type of materials, working principles of AM and types of finishing processes. They have been divided into chemical, thermal, mechanical and hybrid-based categories.

Research limitations/implications

The review has evaluated the possibility of various surface finishing methods for enhancing the surface quality of AM parts. It has also discussed the research perspective of these methods for surface finishing of AM parts at micro- to nanolevel surface roughness and better dimensional accuracy.

Originality/value

This paper represents a comprehensive review of surface quality improvement methods for both metals and polymer-based AM parts.

Graphical abstract of surface quality improvement methods

Details

Rapid Prototyping Journal, vol. 29 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 2 of 2